

Food/Feed Safety Assessment of Biotech Animals Genetic engineering and genome editing

Dr Lisa Kelly Food Standards Australia New Zealand 1 September 2021

The Science, the Opportunities and Regulation of Animal Biotechnology: Genetic Engineering (GE) and Genome Editing (GnEd)

Outline

- Background
- Concepts and principles
- Key elements of the assessment
- Applying the safety assessment approach

Biotech animals as food/feed

- Limited regulatory experience assessing the safety of biotech animals for food/feed
- Limited examples of biotech animals that have received regulatory approval
 - AquAdvantage Salmon
 - GalSafe® Pig
- Some genome edited animals may be classified as not GMOs

Food safety assessment

Concepts, principles and guidelines

FOODS DERIVED FROM MODERN BIOTECHNOLOGY

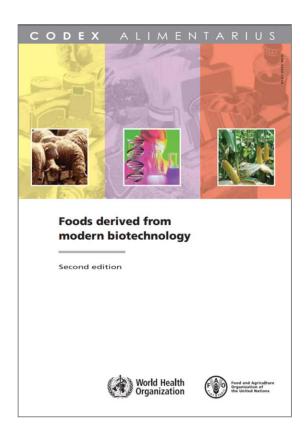
Second edition

PREFACE

PRINCIPLES FOR THE RISK ANALYSIS OF FOODS DERIVED FROM MODERN BIOTECHNOLOGY

CAC/GL 44-2003

GUIDELINE FOR THE CONDUCT OF FOOD SAFETY ASSESSMENT OF FOODS DERIVED FROM RECOMBINANT-DNA PLANTS


CAC/GL 45-2003

GUIDELINE FOR THE CONDUCT OF FOOD SAFETY ASSESSMENT
OF FOODS PRODUCED USING RECOMBINANT-DNA MICRO-ORGANISMS

CAC/GL 46-2003

GUIDELINE FOR THE CONDUCT OF FOOD SAFETY ASSESSMENT OF FOODS DERIVED FROM RECOMBINANT-DNA ANIMALS

CAC/GL 68-2008

Basic approach

Characterised by:

- Flexible, case-by-case assessment
- Consideration of the intended as well as the unintended effects
- Comparison to conventional counterpart with a history of safe use as food
- Identification of new or altered hazards

Key elements of the assessment

Phenotypic information

Description of the host animal and its use in food

Description of modified animal

Health status of the modified animal

Molecular characterisation

Description of the genetic modification

Description of the methods used to produce the modified animal

Characterisation of the genetic modification

Stability of the introduced trait(s)

Assessment of new substances

Assessment of potential toxicity or bioactivity

Assessment of possible allergenicity

Whole food/feed assessment

Compositional analysis

Assessment of nutritional impact

Applying the safety assessment

- Designed for food from animals with a history of safe use as food
- Designed primarily for animals bearing heritable rDNA constructs
- Approach could be adapted to apply to food/feed from animals altered using other techniques, e.g. genome editing

Streamlining the approach

- Approach characterised by flexible, case-by-case assessment
- Intent is for the safety assessment approach to be modified to suit the type of food and specific genetic modification being evaluated.
- Implicit in this flexibility is that data requirements can be adjusted or simplified to suit the specific case under assessment without compromising safety.
- As familiarity increases, there is greater potential for streamlining of the assessment approach (increased regulatory experience, more examples)

Potential areas for streamlining

- Knowing when its appropriate to simplify an assessment is challenging with animals because of limited examples and regulatory experience
- Parts of the safety assessment that may be simplified:
 - phenotypic assessment, e.g. where the host has previously been used for other modifications
 - molecular characterisation, e.g. where the construct is one that has been previously used
 - assessment of new substances, e.g. where the modification does not result in expression of a new protein or the trait is one that has been previously assessed in a different line/species
 - compositional analyses where sample numbers are limited

In summary

- The safety assessment approach for animals is similar to that used for plants
- Very few examples of biotech animals for food use, and very limited regulatory experience in their assessment
- Some aspects of the food safety assessment of biotech animals may be more challenging compared to plants, e.g. compositional analysis
- The assessment approach is intended to be applied in a flexible way taking into account the type of food and the specific genetic modification

Copyright

© Food Standards Australia New Zealand 2014

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any other use as permitted under the *Copyright Act 1968*, all other rights are reserved. Requests for further authorisation should be directed to information@foodstandards.gov.au

www.foodstandards.gov.au

/Food.Standards

@FSANZnews

